Protein-directed synthesis of highly monodispersed, spherical gold nanoparticles and their applications in multidimensional sensing
نویسندگان
چکیده
An in-situ reduction method has been reported to prepare gold nanoparticles (GNPs) of 40-110 nm by using the green reducing agents of proteins, which are activated by H2O2 and the superoxide anion (). The protein of collagen turns HAuCl4 to the aqueous Au(I) ainions, which are further reduced by other proteins to be highly monodispersed and spherical GNPs of different sizes. The GNPs reduced by different proteins are found to be with the exposed {100} facets, the distinctive UV-vis absorption spectra and various colors (See Fig. 1). By means of extracting the color responses, such as red, green and blue (RGB) alterations, an in-situ reduction method-based multidimensional sensing platform is fabricated in the process of GNPs synthesis. Without further modification of GNPs, nine common proteins are found to be well detected and discriminated at different concentrations. Moreover, this sensing platform also demonstrates great potentials in qualitative and semiquantitative analysis on the individuals of these proteins with high sensitivity. Furthermore, the validation of this multidimensional sensing platform has been carried out by analysis on the spiked proteins in human urine and the target proteins in complex matrix (e.g. lysozyme in human tear).
منابع مشابه
Biosynthesis of highly monodispersed, spherical gold nanoparticles of size 4–10 nm from spent cultures of Klebsiella pneumoniae
The development of eco-friendly approach for the preparation of monodispersed gold nanoparticles (GNPs) has received much attention for their easy application. Most of the current methods involve known protocols which employ toxic chemicals and hazardous byproducts. This greatly limits their use in biomedical fields, particularly in clinical applications. Recent research has been focused on gre...
متن کاملبیوسنتز داخلی و خارجی نانوذرات طلا توسط قارچ رایزوپوس اوریزا
Background and Objectives: Gold nanoparticles have found many applications in cancer diagnosis and therapy, drug and gene delivery and DNA and protein characterizations. Fungi are extremely good candidates in the synthesis of metal nanoparticles because of their ability to secrete large amounts of enzymes. The aim of this study was biosynthesis of gold nanoparticles by a fungus. Materials and M...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملRapid Synthesis of Monodisperse Au Nanospheres through a Laser Irradiation -Induced Shape Conversion, Self-Assembly and Their Electromagnetic Coupling SERS Enhancement
We develop a facile and effective strategy to prepare monodispersed Au spherical nanoparticles by two steps. Large-scale monocrystalline Au nanooctahedra with uniform size were synthesized by a polyol-route and subsequently Au nanoparticles were transformed from octahedron to spherical shape in a liquid under ambient atmosphere by non-focused laser irradiation in very short time. High monodispe...
متن کاملChemical Dynamics of Monodispersed Iron Oxide Nanoparticles
This study is comprised of the synthesis and characterization of uniform fine particles of iron oxide in different shapes and sizes. Varying amounts of iron (III) chloride and sodium dihydrogen phosphate was heated at 98 oC for various periods, following the forced hydrolysis method. Scanning electron microscopic analysis showed that the shape and size of the precipitated particl...
متن کامل